The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena.
نویسندگان
چکیده
A homologue of the gene encoding the transcription factor Rim101 (PacC), involved in pH signal transduction in fungi, was identified in the pathogenic basidiomycete Ustilago maydis. The gene (RIM101) encodes a protein of 827 amino acid residues, which shows highest similarity to PacC proteins from Fusarium oxysporum and Aspergillus niger. The gene had the capacity to restore protease activity to rim101 mutants from Yarrowia lipolytica, confirming its homologous function, and was expressed at both acid and neutral pH. Null Deltarim101 mutants were not affected in the in vitro pH-induced dimorphic transition, their growth rate, resistance to hypertonic sorbitol or KCl stress, and pathogenicity. However, similar to pacC (rim101) mutants in other fungi, they displayed a pleiotropic phenotype with alterations in morphogenesis, impairment in protease secretion, and increased sensitivity to Na+ and Li+ ions. Other phenotypic characteristics not previously reported in fungal pacC (rim101) mutants (morphological changes, increased sensitivity to lytic enzymes, and augmented polysaccharide secretion) were also observed in U. maydis mutants. All these modifications were alleviated by transformation with the wild-type gene, confirming that all were the result of mutation in RIM101. These data indicate that the Pal/Rim pathway is functional in U. maydis (and probably in other basidiomycetes) and plays complex roles in pH-sensing phenomena, as occurs in ascomycetes and deuteromycetes.
منابع مشابه
Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
The most important mechanism for fungal response to the environmental pH is the Rim or Pal pathway. Details on its operation are known through the analysis of ascomycete fungi. In this study we analyzed whether this pathway is conserved in a basidiomycete, Ustilago maydis. We could identify only five homologues of the seven known components of the pathway in the U. maydis as well as in other ba...
متن کاملComplementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes.
From a large expressed sequence tag (EST) database representing several developmental stages of Puccinia triticina, we discovered a mitogen-activated protein kinase (MAPK) with homology to kinases with known pathogenic functions in other fungi. This PtMAPK1 is similar to the Ustilago maydis MAPK, Ubc3/Kpp2, but has a longer N-terminal extension of 43 amino acids (aa) with identities to U. maydi...
متن کاملThe promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis.
Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (HyR) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. HyR transformants varied with respect to copy number of integr...
متن کاملIn Silico Analysis of the Structural and Biochemical Features of the NMD Factor UPF1 in Ustilago maydis
The molecular mechanisms regulating the accuracy of gene expression are still not fully understood. Among these mechanisms, Nonsense-mediated Decay (NMD) is a quality control process that detects post-transcriptionally abnormal transcripts and leads them to degradation. The UPF1 protein lays at the heart of NMD as shown by several structural and functional features reported for this factor main...
متن کاملGeneration of a Ustilago maydis ade2 Mutant
The need exists to create the auxotrophic mutants for basidiomycete Ustilago maydis to allow selection of gene transformants in minimal growth media. The ADE2 gene was identified by homology with Saccharomyces cerevisiae. Adenine-requiring auxotrophic mutants were effectively created by homologous recombination in protoplasts using a standard plasmid containing the ADE2 locus interrupted by a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2005